Kinetic Adsorption Profile and Conformation Evolution at the DNA-Gold Nanoparticle Interface Probed by Dynamic Light Scattering
نویسندگان
چکیده
The kinetic adsorption profile at the DNA-gold nanoparticle (AuNP) interface is probed by following the binding and organization of thiolated linear DNA and aptamers of varying chain lengths (15, 30, 44, and 51 mer) to the surface of AuNPs (13.0 ± 1.0 nm diameter). A systematic investigation utilizing dynamic light scattering has been performed to directly measure the changes in particle size during the course of a typical aging-salting thiolated DNA/AuNP preparation procedure. We discuss the effect of DNA chain length, composition, salt concentration, and secondary structure on the kinetics and conformation at the DNA-AuNP interface. The adsorption kinetics are chain-length dependent, composition independent, and not diffusion rate limited for the conditions we report here. The kinetic data support a mechanism of stepwise adsorption of thiols to the surface of AuNPs and reorganization of the thiols at the interface. Very interestingly, the kinetic increases of the particle sizes are modeled accurately by the pseudo-second-order rate model, suggesting that DNA could possess the statistically well-defined conformational evolution. Together with other experimental evidence, we propose a dynamic inner-layer and outer-tail (DILOT) model to describe the evolution of the DNA conformation after the initial adsorption of a single oligonucleotide layer. According to this model, the length of the tails that extend from the surface of AuNPs, capable for hybridization or molecular recognition, can be conveniently calculated. Considering the wide applications of DNA/AuNPs, the results should have important implications in sensing and DNA-directed nanoparticle assembly.
منابع مشابه
Manganese mine actinobacterial mediated gold nanoparticles synthesis and their antibacterial activity
Background and Objectives: Actinobacteria efficiently can produce different nanoparticles with different biological properties due to their ability to produce secondary metabolites. The aim of present study, isolation and screening of gold nanoparticles via producing actinobacteria from the soil were studied and their antibacterial activities was evaluate. Methods: In this study, after iso...
متن کاملKeratin nanoparticles: synthesis and application for Cu(II) removal
A straightforward procedure to synthesize keratin nanoparticles (KNP) from chicken feathers was introduced. The characterization of the synthesized nanoparticles was done using Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM). The FTIR analysis revealed no significant chemical change after...
متن کاملبررسی دارورسانی نانوذرات مزوحفرهی سیلیکایی – نانومیله طلا و تاثیر کورکومین درون این نانوذرات برروی ردههای سلول MCF7 و 4T1 سرطان سینه
Background and Objective: Curcumin is a polyphenolic anti-cancer and anti-inflammatory agent and can be used both orally and by injection. In this study, nanoparticles of silica mesopore- gold nano were synthesized as a new drug delivery system. For this aim, gold nanoparticles as a promising system for effective drug delivery of curcumin was used and nano gold were delivered to breast cancer c...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملKinetic studies of Pb and Ni adsorption onto MCM-41 amine-functionalized nano particle
In the current investigation a novel nano hybrid adsorbent MCM-41/N-(3-trimethoxysilyl)-propyl)diethylenetriamine (MCM-41/TMSPDETA) was prepared and was characterized using DLS (Dynamic Light Scattering), Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analytical techniques and Transmission electron microscopy (TEM). The synthesized MCM-41/TMSPDETA adsor...
متن کامل